Exercise 2.4.2

Use linear stability analysis to classify the fixed points of the following systems. If linear stability analysis fails because $f^{\prime}\left(x^{*}\right)=0$, use a graphical argument to decide the stability.

$$
\dot{x}=x(1-x)(2-x)
$$

Solution

The fixed points occur where $\dot{x}=0$.

$$
\begin{gathered}
x^{*}\left(1-x^{*}\right)\left(2-x^{*}\right)=0 \\
x^{*}=0 \quad \text { or } \quad 1-x^{*}=0 \quad \text { or } \quad 2-x^{*}=0 \\
x^{*}=0 \quad \text { or } \quad x^{*}=1 \quad \text { or } \quad x^{*}=2
\end{gathered}
$$

Use linear stability analysis to classify these points.

$$
\begin{aligned}
f(x) & =x(1-x)(2-x) \\
& =2 x-3 x^{2}+x^{3}
\end{aligned}
$$

Differentiate $f(x)$.

$$
f^{\prime}(x)=2-6 x+3 x^{2}
$$

As a result,

$$
\begin{array}{lll}
f^{\prime}(0)=2>0 & \Rightarrow & x^{*}=0 \text { is an unstable fixed point. } \\
f^{\prime}(1)=-1<0 & \Rightarrow & x^{*}=1 \text { is a stable fixed point. } \\
f^{\prime}(2)=2>0 & \Rightarrow & x^{*}=2 \text { is an unstable fixed point. }
\end{array}
$$

The graph of \dot{x} versus x confirms these results.

